Search results for "Manifold alignment"
showing 5 items of 5 documents
Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization
2016
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…
2016
The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as d…
Nonlinear Time-Series Adaptation for Land Cover Classification
2017
Automatic land cover classification from satellite image time series is of paramount relevance to assess vegetation and crop status, with important implications in agriculture, biofuels, and food. However, due to the high cost and human resources needed to characterize and classify land cover through field campaigns, a recurrent limiting factor is the lack of available labeled data. On top of this, the biophysical–geophysical variables exhibit particular temporal structures that need to be exploited. Land cover classification based on image time series is very complex because of the data manifold distortions through time. We propose the use of the kernel manifold alignment (KEMA) method for…
Weakly supervised alignment of multisensor images
2015
Manifold alignment has become very popular in recent literature. Aligning data distributions prior to product generation is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. We propose a methodology that finds a common representation among data spaces from different sensors using geographic image correspondences, or semantic ties. To cope with the strong deformations between the data spaces considered, we propose to add nonlineari-ties by expanding the input space with Gaussian Radial Basis Function (RBF) features with respect to the centroids of a partitioning of the data. Such featur…
Approximation of functions over manifolds : A Moving Least-Squares approach
2021
We present an algorithm for approximating a function defined over a $d$-dimensional manifold utilizing only noisy function values at locations sampled from the manifold with noise. To produce the approximation we do not require any knowledge regarding the manifold other than its dimension $d$. We use the Manifold Moving Least-Squares approach of (Sober and Levin 2016) to reconstruct the atlas of charts and the approximation is built on-top of those charts. The resulting approximant is shown to be a function defined over a neighborhood of a manifold, approximating the originally sampled manifold. In other words, given a new point, located near the manifold, the approximation can be evaluated…